- · 图书馆乐享数字资源主题活动[11/26]
- · 图书馆共享党员之家活动室启用[11/26]
- · 转发:教育系统“美好‘食’光””校园系列活动主题作品征集活动通知[11/03]
- · 红柳法学大讲堂第二十八期[11/03]
- · 关于举办兰州理工大学“红柳之星”2020校园新生才艺大赛的通知[10/30]
- · “科学家精神报告团”进校园活动通知[10/28]
- · 兰州理工大学2020年秋季学期国家普通话水平测试报名通知[10/27]
- · 2020年秋季学期至2021年寒假国内外线上线下交流项目报名通知[10/20]
基于WMNPE间歇过程监测的改进SVDD算法
作者: 惠永永 赵小强
关键词: 间歇过程 过程监控 多向邻域保持嵌入(MNPE)算法 支持向量数据描述(SVDD)
摘要:间歇过程数据包含表征过程变化的相关信息和非相关信息,并且呈现高斯与非高斯的多分布等特点.为了更加充分地提取数据的有用信息和处理数据的非高斯性等问题,实现有效的过程监控,提出一种基于WMNPE间歇过程监测的改进SVDD算法.首先运用多向邻域保持嵌入(MNPE)算法来提取低维子流形以实现降维;再使用概率权值策略来提取表征过程变化的相关信息,通过Greedy方法提取低维子流形的特征样本;最后以支持向量数据描述(SVDD)方法建立监控模型进行监控.通过青霉素发酵过程仿真平台验证了所提算法的有效性.
上一篇: 长周期地震动的界定及对应场地发生概率
下一篇: 基于G.729编码语音流的隐秘通信方法