- · 图书馆乐享数字资源主题活动[11/26]
- · 图书馆共享党员之家活动室启用[11/26]
- · 转发:教育系统“美好‘食’光””校园系列活动主题作品征集活动通知[11/03]
- · 红柳法学大讲堂第二十八期[11/03]
- · 关于举办兰州理工大学“红柳之星”2020校园新生才艺大赛的通知[10/30]
- · “科学家精神报告团”进校园活动通知[10/28]
- · 兰州理工大学2020年秋季学期国家普通话水平测试报名通知[10/27]
- · 2020年秋季学期至2021年寒假国内外线上线下交流项目报名通知[10/20]
基于小波分解的DIF-RBFNN超短期风速组合预测方法
作者:李德顺 李宁 李银然 吴世龙 李仁年 郭涛
关键词: 数据输入格式; 小波分解; 径向基神经网络;
摘要:提出了一种基于小波分解(wavelet-decomposition)的数据输入格式-径向基神经网络(data input format-radial basis functional neural network)超短期风速组合预测模型.该模型首先将风速时间序列数据进行小波分解,减缓风速时间序列的波动性,然后将分解后的低频、高频部分分别建立数据输入格式(风速输入矩阵),并通过径向基神经网络模型进行预测,最后通过自适应叠加得到最终预测结果.结合宁夏某风场实测数据,将该预测模型和其他三种预测模型的仿真实验结果与实测值进行对比,表明该组合预测模型具有较高的预测精度.
上一篇:分流叶片对离心泵空化性能影响的数值预报
下一篇:法兰设计方法及预紧力的确定