- · 图书馆乐享数字资源主题活动[11/26]
- · 图书馆共享党员之家活动室启用[11/26]
- · 转发:教育系统“美好‘食’光””校园系列活动主题作品征集活动通知[11/03]
- · 红柳法学大讲堂第二十八期[11/03]
- · 关于举办兰州理工大学“红柳之星”2020校园新生才艺大赛的通知[10/30]
- · “科学家精神报告团”进校园活动通知[10/28]
- · 兰州理工大学2020年秋季学期国家普通话水平测试报名通知[10/27]
- · 2020年秋季学期至2021年寒假国内外线上线下交流项目报名通知[10/20]
基于遗传扰动机制的改进蝙蝠优化算法
作者:杜先君 马金斗
关键词: 蝙蝠算法; 全局优化; 竞争机制; 遗传算法;
摘要:针对蝙蝠算法现存的缺点,如收敛速度慢、优化精确度低、早熟,提出一种基于遗传扰动机制的改进蝙蝠算法(GDBA).该优化算法引入了遗传竞争机制,通过比较与全局最优解的差异,随时调整遗传算法的交叉率和变异率,使得种群具有遗传性和多样性,解决了蝙蝠算法早熟的问题,同时加快了收敛速度,提高了优化精度.采用基准测试函数进行仿真验证,实验结果表明:与蝙蝠算法(BA)和基于速度权重扰动机制的改进蝙蝠算法(WDBA)相比,该算法(GDBA)具有更好的收敛速度和搜索精度,加强了寻找全局最优解的能力.