投稿须知
  一、征文范围及内容
  本刊主要刊登材料科学与工程、机械工程与动力工程、化工与轻工、自动 ...

基于深度森林算法的分布式WSN入侵检测模型

作者:董瑞洪 闫厚华 张秋余 李学勇

关键词: 入侵检测 无线传感器网络 随机森林 深度森林算法 集成分类器

摘要:针对现有的特征选择算法和分类算法在无线传感器网络(WSN)入侵检测系统中检测性能表现不佳、检测实时性差、模型复杂度高等问题,提出一种基于随机森林和深度森林算法的分布式WSN入侵检测模型.该模型首先对传感器节点流量数据进行预处理;然后将轻量级随机森林分类器部署到传感器节点和簇头节点,传感器节点和簇头节点合作对流量数据进行处理,并在基站上采用深度森林算法从大量流量数据中发现攻击行为;最后对WSN中的入侵行为进行实时分类入侵检测.使用无线传感器数据集WSN-DS和NSL-KDD数据集来评估所提出的模型性能.实验结果表明,该模型与现有的入侵检测模型相比,具有良好的检测性能,实时性较高,可避免模型过度拟合.


上一篇:基于DDNPE算法的间歇过程故障诊断
下一篇:基于Agast-Adaboost的图像匹配算法

Copyright 2007 Weihai China All Rights Reserved 兰州理工大学学报版权
鲁ICP备05001812号 
地址:甘肃省兰州市兰工坪路287号(730050)